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Abstract

Spherical microphone arrays and sound field decomposition using spherical harmonics have recently come into the focus
of interest for the analysis of sound fields, room acoustics or spatial audio recording applications. For this purpose,
the Sound Field Analysis Toolbox (SOFiA) has been developed and implemented. It comprises various functions
for the analysis of sound fields using data from spherical microphone arrays. SOFiA is designed for MATLAB and
consists of native m-functions and externals written in C/C++ yielding an efficient and consistent processing chain.
An overview of the SOFiA processing chain is given as well as a closer discussion of selected details. As sound field
analysis involves a considerable amount of signal processing, a detailed verification is crucial. A general approach
for a gradual verification of the processing chain for sound field analysis is presented and applied to SOFiA. This
verification process includes several steps from an analytic computation of spatial Fourier coefficients to the complete
evaluation of predefined real measurement scenarios. The SOFiA toolbox software is freely available under the GNU
GPL v3 license. For the evaluation of SOFiA, exemplary datasets from a VariSphear scanning array system are
available under the Creative Commons license.

1 Introduction

We present a sound field analysis toolbox for MATLAB
called SOFiA. The corresponding theory of sound field
analysis is presented e.g. in [1], [2], [3]. The toolbox
offers capabilities to process real data from spherical
microphone arrays and to simulate the impact of a plane
wave on a spherical array. The latter is useful for
any kind of verification or simulation of spherical array
problems. The first release presented here focuses on
the fundamental processing toolchain and enables the
user to render directional room impulse responses and
to visualize sound field responses. Further extension of
the toolbox is planned. The toolbox is released as free
software under the GNU GPL v3 license and is available
at [4] including an online documentation. Apart from
the basic signal processing routines, various application
examples are included and illustrated. Furthermore real
microphone array datasets captured with a VariSphear
scanning array system [5] are available under the Creative
Commons license for experiments and evaluation. SOFiA
is intended to serve academic or research purposes and
is focused on sound field analysis of measured data,
simulation of spherical arrays and teaching or studying
the methods of sound field analysis. The first part of
this paper introduces the software structure and gives
a short description of the modules. In the second part
a proposal for the gradual verification of a sound field
processing chain is presented and applied to SOFiA.

2 Software architecture

SOFiA consists of different processing modules that can
be individually arranged depending on the intended
purpose. Some of the modules are implemented in M-
code (the native MATLAB language). The computa-
tionally intensive modules are written in C/C++ and
can be accessed through MEX files within MATLAB.
These modules are called cores. The latter internally

access the BOOST C++ library [6] for the computation
of higher mathematical functions such as Bessel and
Hankel functions, Legendre polynomials and spherical
harmonics. Fig. 1 gives an overview of the structure and
the features of the first release.

2.1 Data Import and Preprocessing

Different options are available to import microphone
array data into SOFiA. The readVSAdata module is used
to import VariSphear [5] datasets. For other types of
microphone arrays the mergeArrayData module aligns
the data to be processible by further structures. Both
modules process time domain data and enable temporal
downsampling and normalization. The downsampling
option can be used to avoid spatial aliasing although
at the expense of decreasing the audio bandwidth. The
F/D/T (Frequency Domain Transform) module trans-
forms the signals into the frequency domain using the fast
Fourier transform, whereas only the half-sided spectrum
is handed over as discussed in section 3.4. Temporal
segments of the time signals to be included in the
transform operation can be defined. This way the
data can be analyzed in blocks or by implementing a
running window, thereby facilitating the extraction of the
temporal sound field structure as discussed in section 3.5.

2.2 Plane wave generators

Plane waves can be simulated using the plane wave
generators I/W/G (Ideal Wave Generator) and S/W/G
(Sampled Wave Generator). Both generate a full spec-
trum unity gain plane wave. The I/W/G module delivers
ideal analytical Fourier coefficients as discussed in section
3.2 whereas the S/W/G module involves discrete spatial
sampling as demonstrated in section 3.3. The wave
generators are useful to test the signal processing chain
or to set up simulation environments for spherical array
problems.
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Figure 1: SOFiA module and signalflow overview of the first release.

2.3 (Inverse) Spatial Fourier Transform

An important operation in sound field analysis is the
spatial Fourier transform [1]. SOFiA includes a spatial
Fourier transform core (S/T/C) and an inverse spatial
Fourier Transform core (I/T/C). Both are optimized for
sound field analysis and offer fast calculation speed on
the one hand and high numerical accuracy on the other
hand.

Figure 2: Runtime example of the SOFiA S/T/C module
on M=10 − 1000 spatial sampling positions (microphones)
for different FFT-Blocksizes (NFFT). The maximum order of
decomposition is N =

p
M/2 − 1. System: Intel Core2Quad

Q9550, 2.8 GHz, 8GB RAM. Microsoft Windows 7 64 Bit,
Matlab 2010a (64Bit). All results are averaged by 10 runs.

2.4 Plane wave decomposition/beamforming

The included plane wave decomposition and beamform-
ing core (P/D/C) can process a large amount of de-
composition directions simultaneously, which leads to
fast processing e.g. for visualization or auralization
purposes. The core accepts radial filter coefficients either
coming from the SOFiA M/F core (see section 2.5) or
generated externally. Furthermore it offers an input
for beamforming coefficients. These can either have a
constant directivity or be frequency dependent.

2.5 Modal Radial Filters

The SOFiA M/F (Modal Filter) core generates modal ra-
dial filters for spherical arrays of different configurations:

• Open sphere with omnidirectional microphones,

• Open sphere with cardioid microphones, and

• Rigid sphere with omnidirectional microphones.

Furthermore the core includes amplification soft-limiting
and free field powerloss compensation as proposed in
[7]. Amplification limiting is vital for working with real
measurement data from microphone arrays with a finite
signal to noise ratio. The core has an output channel
to observe the on-axis (ωc r)-response when using limiter
functions.

Figure 3: Exemplary radial filter magnitudes for orders
N = 0...4 using amplification soft-limiting to +30 dB. The
filters are designed for a rigid sphere configuration.

2.6 Sound field extrapolation

A very simple and basic module for the extrapolation of
sound fields named E/X/P covering both exterior and
interior domain problems is included in the basic release.
The module is implemented straightforwardly as defined
in [1] but care has to be taken in practice because the
extrapolation process involves possible poles, a problem



Figure 4: Response to a measured wavefront coming
from φw = 180◦ and θw = 90◦ in the anechoic chamber at
a decomposition order of N = 7. The upper row shows
the response for different ( ω

c
r) using radial-filters without

amplitude limiting. At low ( ω
c
r) the array response becomes

unstable due to measurement noise and a high amplification
ratio of higher modes. The bottom row shows the same
results with SOFiA amplitude soft limiting to a maximum of
+5 dB. The spatial response expands with falling ( ω

c
r) but the

beam maintains stable. Values: (a) ( ω
c
r) = 1.5 , (b) ( ω

c
r) = 3 ,

(c) ( ω
c
r) = 3.5 and (d) ( ω

c
r) = 5.

similar to the radial filter inversion problem when dealing
with open sphere configurations using pressure micro-
phones. Nevertheless, the presented module can serve
as a basis for extrapolation experiments or optimized
implementation.

2.7 Data Visualization

SOFiA delivers tools for a response visualization. In a
first step the makeMTX module generates a matrix of
[360 × 180] nodes leading to a resolution of 1◦ for the
full globe. The module internally uses the P/D/C core,
section 2.4. Once the matrix is generated, the data is
shifted to the visual3D module that directly generates
a plot in MATLAB. Different visualization styles are
available, see Fig. 5.

Figure 5: Different visualization styles using the visual3D
module. All plots show the same dataset.

2.8 Impulse response rendering

The makeIR module generates impulse responses or
time domain signals from data, either coming from the
P/D/C core or the I/T/C core. It recombines the
previously omitted negative part of the spectrum, applies
a fast inverse Fourier transform and enables resampling

to the original sampling rate in case the signal was
downsampled in readVSAdata or mergeArrayData. A
windowing option is included.

3 Verification

Sound field analysis comprises of a considerable amount
of processing and therefore a detailed verification is cru-
cial. The verification of a sound field analysis chain can
be performed in various stages of increasing complexity
concerning the processing steps and the required exper-
imental environment. A general verification approach is
proposed, starting with an emulation of spatial Fourier
coefficients using a generator module and ending up
evaluating measurements taken in rooms. Apart from
delivering a verification of the toolchain the following
steps can also be useful to have a comprehensive and
practical introduction to the basic principles of sound
field analysis using spatial decomposition techniques as
presented in [1], [2], [3]. Therefore all steps will be
discussed in detail.

3.1 Stage I: Spatial Fourier Coefficients

At the first stage spatial Fourier coefficients are generated
that only consider the angular solutions of the wave
equation given in terms of Legendre polynomials and
exponential functions. The latter can be merged into
a single expression represented by the surface spherical
harmonics [1]:

Y mn (θ, φ) =

√
(2n+ 1)

4π
(n−m)!
(n+m)!

Pmn (cos θ) eimφ. (1)

Pmn denote Legendre functions of order n and mode
m, θ and φ describe the elevation and azimuth angles.
As the radial part has not been considered so far, the
solution does not depend on the frequency, and the
resulting coefficients do not directly correspond to those
expected from real spatial waves. But in a first step
it is useful to evaluate the angular functions separately.
The Fourier coefficients G̊mn for a direction (θw, φw)
directly correspond to the complex conjugate spherical
harmonics:

G̊mn = Y m∗n (θw, φw). (2)

The output signal S for a specific look direction (θl, φl)
is generated using:

S(θl, φl) =
N∑
n=0

n∑
m=−n

Y mn (θl, φl) G̊mn. (3)

This output signal represents an ideal radial compen-
sated plane wave array response of order N .

The spatial sharpness improves with an increased order
N . In theory for N → ∞ a spatial dirac impulse will
arise. In measurement applications the maximum order
is limited due to different factors such as a finite number



Figure 6: Ideal plane wave response to a wave from
φw = 60◦ and θw = 60◦ at a single frequency for different
orders: (a)N = 3, (b)N = 6, (c)N = 9 and (d)N = 20.

of discrete spatial sampling nodes, a limited signal to
noise ratio or microphone positioning errors [3].

Involved SOFiA modules: I/W/G, P/D/C,
makeMTX and visual3D. Optional: makeIR.

3.2 Stage II: Including the radial solution

On a second stage the radial part of the wave equation
is included, involving frequency dependence. Now the
radius, the sphere configuration and the microphone
characteristics of the array have to be considered, and the
resulting coefficients correspond to those expected for a
real plane wave. A radial function bn(ωc r) is introduced,
where ω denotes the angular frequency, c the speed of
sound and r the array measurement radius. The design of
the radial function depends on the sphere configuration
and microphone types. An open measurement sphere
with pressure transducers leads to [3]:

bn
(
ω
c r
)

= 4π in jn
(
ω
c r
)
. (4)

Using an open sphere with cardioid transducers yields
[8]:

bn
(
ω
c r
)

= 4π in 1
2

(
jn
(
ω
c r
)
− i j′n

(
ω
c r
))
. (5)

For a rigid sphere with pressure transducers the wave
that is scattered by the array surface is taken into
consideration [2]:

bn
(
ω
c r
)

= 4π in
(
jn
(
ω
c r
)
−

j′n(ωc r)

h
(2)′
n (ωc r)

h(2)
n

(
ω
c r
))
. (6)

4π is introduced for normalization and i =
√
−1 denotes

the imaginary unit. The radial functions contain different
compositions of spherical Bessel functions jn(ωc r) and
spherical Hankel functions hn(ωc r), providing solutions
to the radial part of the wave equation in spherical
coordinates [1]. Taking into account the radial functions,
the analytic spatial Fourier coefficients for a plane wave

arriving from the direction (θw, φw) can be synthesized
according to:

P̊mn = Y m∗n (θw, φw) bn
(
ω
c r
)
. (7)

When running the plane wave decomposition we have to
compensate for the radial structure of the sound field to
achieve the same response observed in the previous stage.
This is where the radial filter dn(ωc r) is introduced. For
simulation purposes we can simply use the radial filters
defined by:

dn
(
ω
c r
)

=
1

bn(ωc r)
. (8)

But in measurements these filters do not work on the
entire frequency range. First of all in measurements
only a limited signal to noise ratio is available and the
modal amplification demanded by these filters becomes
very high at low (ωc r). Thus the filters will amplify
noise rather than signal at lower frequencies. This may
lead to an unstable array response. Hence in practice
the amplification of higher modes must be limited to
a reasonable value in order to obtain a stable array
response, e.g. as proposed in [7]. This limiting operation
leads to loss of spatial resolution at lower frequencies.
Furthermore, there is another problem when inverting
the radial function given in Eq. (4), as the spherical
Bessel function has roots leading to poles in the response.
However, this can be solved e.g. by a dual-radius
approach [3] or by choosing a different configuration. For
the following plane wave decomposition we use the radial
filters shown in Eq. (8):

S
(
θl, φl,

ω
c r
)

=
N∑
n=0

n∑
m=−n

Y mn (θl, φl)

P̊mn cn
(
ω
c r
)
dn
(
ω
c r
)
.

(9)

The generated output signal represents a perfect plane
wave response of order N captured by an ideal mi-
crophone array with a number of microphones tending
to infinity and an infinite signal to noise ratio. The
coefficients cn(ωc r) are introduced in order to enable
beamforming and can be configured to hold a constant
directivity or to be frequency-dependent. In this paper
cn = 1 is assumed leading to a plane wave decomposition
using a regular beam pattern. Therefore in the following
the cn(ωc r) coefficients will be neglected in order to
simplify the equations. The result is identical to stage
I, see Fig. 6, but the scenario is much closer to a sound
field sampled by an array. The sphere configuration,
radius and observed frequency range are not of very great
importance in this case, as the virtual radial filters can
compensate for any required amplification in most of
the cases as no signals containing noise are used here.
The current stage is suitable to observe the influence of
amplitude limited radial filters on the array response.

Involved SOFiA modules: I/W/G, P/D/C,
makeMTX and visual3D. Optional: makeIR.



3.3 Stage III: Discrete sampling positions

The third stage introduces discrete spatial sampling
positions as the number of microphones in a practical
array is limited. For that purpose a sound field is
generated using the analytical definition of a unity gain
plane wave. The complex pressure P for a microphone
at position (θj , φj , r) in an open sphere array with
pressure transducers and a specified angular frequency
ω is determined by:

P (θj , φj , rj , ωc ) = ei
ω
c rm(sinθjcosφj sinθwcosφw +

sinθjsinφj sinθwsinφw + cosθj cosθw).
(10)

At this point the spatial Fourier transform [1] must be
introduced in order to transform the pressure in the
spatial domain to spatial Fourier coefficients P̊mn in the
spherical wave domain:

P̊mn
(
ω
c r
)

=
∫ ∫

P
(
θ, φ, r, ωc

)
Y m

∗

n (θ, φ) sinθ dθ dφ.

(11)

As discrete microphone positions are considered in this
section the integration of the complete sphere is replaced
by a summation of all available microphone positions
(e.g. defined by a quadrature grid) on the sphere,
compare [3]:

P̊mn
(
ω
c r
)

=
M∑
j=1

βj P
(
θj , φj , r,

ω
c

)
Y m

∗

n (θj , φj). (12)

The weighting factors βj account for the sampling grid.
The response signal for (θl, φl) and the angular frequency
ω can be achieved using:

S
(
θl, φl,

ω
c r
)

=
N∑
n=0

n∑
m=−n

Y mn (θl, φl)
P̊mn

4π in jn(ωc r)
,

(13)

with the radial filter 4π in jn(ωc r) corresponding to the
open sphere design with pressure transducers. At this
point spatial aliasing may be observed, caused by the
discrete sampling within the space domain. For any real-
istic processing application the maximum order N should
be limited to N < ω

c r to keep the aliasing contributions
related to sampling low [9]. This implies effectively an
upper frequency limit up to which meaningful results
can be achieved. But for simulation purposes or studies
on aliasing artifacts it is quite interesting to exceed this
limit as illustrated in Fig. 7 and Fig. 8. Furthermore this
analytically defined synthetic sound field and the discrete
sampling positions placed within, facilitate different error
simulations where e.g. the impact of a microphone
position deviation or a variance of the air temperature
on the array response can be analyzed.

Involved SOFiA modules: S/W/G, S/T/C, P/D/C,
makeMTX, visual3D and makeIR.

Figure 7: Aliasing artifacts for (a) ( ω
c
r)<N with

very low alias contribution, (b) ( ω
c
r)>N with some alias

contribution, (c) and (d) examples of ( ω
c
r)�N with high

alias contribution. The directional information is disarranged
when exceeding the ( ω

c
r)≈N limit and very high output

levels arrise.

Figure 8: Exemplary simulation to illustrate the impact
of spatial aliasing on the frequency response for an array
looking into the direction of a full audio spectrum unity plane
wave. For frequencies where ( ω

c
r)<N the response is flat

as expected. At a region where ( ω
c
r)�N severe peaks and

notches arise due to spatial aliasing.

3.4 Stage IV: The measured sound field

At the next stage we leave the simulation environment
behind and step into real measurements. The aim of
this stage is to establish an experimental setup that is
widely controllable and to deliver results that are easily
comparable to those observed in the previous simulative
stages. As now real physical parameters and signals
paired with discrete digital signal processing are coming
up, a detailed view on the necessary steps is presented.
For the experiment a spherical microphone array includ-
ing preamplifiers and audio interfaces is required. The
measurements take place in the anechoic chamber, in
order to enable capturing a single wave, expecting only
a comparatively low contribution of reflections. The
microphone array is placed in the far field of a speaker
system (source). Impulse responses hj(θj , φj , r, t) are
captured for all array microphones j = 1...M e.g. by
using techniques introduced in [10] as depicted in Fig.
9. A conventional Fourier transform from time domain
to frequency domain is applied to the impulse responses
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Figure 9: Capturing the impulse responses using a
microphone array in the anechoic chamber in stage IV.

delivering complex-valued pressures:

P (θj , φj , r, f) =
∫ ∞
−∞

hj(θj , φj , r, t) e−i 2πf t dt, (14)

where f denotes the frequency and t the time. For
digital processing a DFT (Discrete Fourier Transform)
is used instead, combining discrete sampling in both the
temporal and spectral domain and assuming a causal
signal of finite length:

P (θj , φj , r, q) =
K−1∑
u=0

hj(θj , φj , r, u) e−i 2πu q/K , (15)

where K is the total number of samples in the time
domain, u describes the temporal sampling index and
q a frequency bin. The range of q is [ 0;K−1 ]. For
the subsequent processing steps q can be limited to
the half-sided spectrum in the range [ 0; dK/2e] to save
computational workload without suffering from any loss
of information. The value of the angular frequency ω is
related to the discrete frequency q as follows:

ω =
2π q fs

(K − 1)
, ω ∈ [0 ; 2πfs], (16)

depending on the sampling frequency fs. We stay in
the temporal discrete q notation leading to the following
expression for the estimation of the spatial Fourier
coefficients:

P̊mn(r, q) ≈
M∑
j=1

βj P (θj , φj , r, q) Y m
∗

n (θj , φj), (17)

being similar to Eq. (12). A discrete formulation of
Eq. (9) is:

S(θl, φl, r, q) =
N∑
n=0

n∑
m=−n

Y mn (θl, φl) P̊mn(r, q) d′n(qr),

(18)

and returns a Nth-order spatial decomposition of the
incoming sound field refering to the direction (θl, φl).
It is necessary to use radial filters d′n(qr) with modal
amplification limiting here, as discussed in section 2.5.
The resulting output signal S(θl, φl, r, q) can be used to
extract a superdirective plane wave decomposition of the
measured sound field or to visualize the impact of plane

waves. The directional impulse response or time signal is
calculated using the inverse Fourier transform to return
from the frequency domain to the time domain:

h(θl, φl, r, t) =
∫ ∞
−∞

S(θl, φl, r, f) ei 2π f t df, (19)

which is beeing replaced again by a discrete formulation
using the inverse discrete Fourier transform (IDFT):

h(θl, φl, r, u) = <

{
1
K

K−1∑
q=0

S(θl, φl, r, q) ei 2π u q/K
}
.

(20)

When using the half-sided spectrum for q ∈ [0;K ′],
K ′ = dK/2e, as discussed above, the dismissed part
of the spectrum has to be reconstructed. For an even
number of samples K the impulse response or time signal
can be computed using:

h(θl, φl, r, u) = <

{
1
K

(
K′∑
q=0

S(θl, φl, r, q) ei 2π u q/K+

K′−1∑
q′=1

S∗(θl, φl, r,K ′ − q′) ei 2π u (K′+q′)/K

)}
,

(21)

and for an odd number of samples K using:

h(θl, φl, r, u) = <

{
1
K

(
K′∑
q=0

S(θl, φl, r, q) ei 2π u q/K+

K′−1∑
q′=0

S∗(θl, φl, r,K ′ − q′) ei 2π u (K′+q′+1)/K

)}
.

(22)

Where only the real part <{·} of the expressions is taken
into account. The theoretical result should not have
any imaginary components but in practice a very tiny
imaginary part can appear due to numerical issues. To
visualize the response at a specific frequency Eq. (18)
must be applied to a desired matrix of visualization
angles. For instance, [360 × 180] nodes have to be
calculated using Eq. (18) to obtain a step resolution of 1◦

on the full globe, as described in section 2.7. Furthermore
the wavefronts generated by the speaker are assumed to
be plane when arriving at the array. This simplification
leads to an error that decreases when increasing the
source distance as the wave tends to become more plane
for larger distances. Generally neglecting errors and
limitations that arise in a realistic scenario, we now
should be able to observe an array response that is
very close to the simulated plane wave responses of the
previous stages. The response is illustrated in Fig. 10.
Apart from errors, we encounter discrete spatial sampling
positions on the one hand and a limited signal to noise



Figure 10: Array response to a plane wave coming from
φw = 180◦ and θw = 90◦ at a frequency of around 1.6 kHz. The
decomposition order is N = 4. The array runs on a 86 points
Levedev grid in open sphere configuration at a diameter of
d= 50cm. A large diaphragm cardioid microphone (Microtech
Gefell M900) and an AD-Systems Flex15 PA speaker system
at a distance of 4 m are used. The result looks very similar
to the simulations.

ratio on the other hand. These two inevitable factors
limit the possible frequency operation range of the array
as has already been discussed in the previous sections and
[3]. The optimum operation range for spherical array is
around (ωc r)≈N [3].

Involved SOFiA modules: readVSAdata, F/D/T,
S/F/T, P/D/C, makeMTX and visual3D. Optional:
makeIR.

3.5 STAGE V - Spatiotemporal decomposition

For the next experiment we also take measurements from
the anechoic chamber. Various sources are placed around
the array as depicted in Fig. 11 and Fig. 12. The sources
are all placed on the same radius referring to the center
of the array and are calibrated to a common sound
pressure level. A loadspeaker management processor is
used to control levels and delay times for all sources
independently. This way it is possible to generate
multiple waves differing in arrival directions, sound
pressure levels and arrival times in an accurately defined
and widely controllable scenario.
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Figure 11: Setup for capturing multiple sources demonstrat-
ing the spatiotemporal resolution in stage V.

This section will reveal the full potential of the technique
leading to a short-time spatiotemporal decomposition of
a measured sound field into plane waves. The spatial
decomposition has already been discussed and observed
in the previous sections. To decompose the temporal
structure it is necessary to introduce the short time

Figure 12: Experimental setup in the anechoic chamber as
used for stage V: A VariSphear scanning array measurement
system equipped with an Earthworks M30 microphone in a
rigid sphere configuration and four Genelec 1029A speakers
controlled by a XTA DP224 speaker management system are
used.

Figure 13: Result from the experiment in stage
V. The sources are delayed as follows: φw = 45◦ : 0 ms,
φw = 15◦ : 16 ms, φw = 345◦ : 32 ms, φw = 315◦ : 48 ms. The
visual response for a decomposition of order N = 5 at
a frequency of around 3.8 kHz is plotted for the corre-
sponding timeshifts (a) τ = 0 ms, (b) τ = 16 ms, (c) τ = 32 ms,
(d) τ = 48 ms. A rectangular window of 256 samples is
applied. The array is configured to a 110 points Lebedev
grid in a rigid sphere with a diameter of d = 17.5 cm. The
sources can now be separated nicely in time and space.

Fourier transform which is quite similar to Eq. (14) but
now including a window function w(t− τ):

P (θj , φj , r, f, τ) =
∫ ∞
−∞

hj(θj , φj , r, t)

w(t− τ) e−i 2πf t dt,
(23)

that enables to extract the spectra of different time slots
shifted by τ and covered by the window function. Again
considering the discreteness, a short-time DFT is used
for the processing analog to Eq. (15):

P (θj , φj , r, q, T ) =
K−1∑
u=0

hj(θj , φj , r, u)

w(u− T ) e−i 2πu q/K ,

(24)



where T is the sample shift of the window function.
There are several window functions available, from a
simple rectangular window to more sophisticated ones
like e.g. Hann, Hamming or Blackman windows, each
having different impacts on the spectrum and bringing its
own assets and drawbacks [11]. A convenient choice for
the presented purpose is e.g. a Tukey window (tapered
cosine). Let the window be symmetrical with an odd
sample length L, then reaching from T − (L − 1)/2 to
T + (L− 1)/2. Choosing a short window in time domain
will give a good temporal resolution but decreases the
spectral resolution and vice versa. This means that
sharpness can be exchanged between the time and the
frequency domain by varying L. The window can be
moved in blocks or sample by sample, thereby leading
to a sliding response. However for each sampleshift T we
obtain a particular set of spatial Fourier coefficients P̊mn:

P̊mn(r, q, T ) ≈
M∑
j=1

βj P (θj , φj , r, q, T ) Y m
∗

n (θj , φj),

(25)

where the pressure P (θj , φj , r, q, T ) is computed using
Eq. (24). The number of available spectral coefficients q
depends on the length of the applied window L. Further
processing is done according to the last section starting
with Eq. (18) et sqq. and e.g. repeating these operations
for all different sets of temporal shifted P̊mn(r, q, T )
coefficients depending on the required purpose.

Involved SOFiA modules: readVSAdata, F/D/T,
S/F/T, P/D/C, makeMTX and visual3D. Optional:
makeIR.

Before proceeding to stage VI further experiments with
different configurations could be conducted inside the
anechoic chamber, like e.g. placing a reflective surface.
But these experiments do not reveal much more informa-
tion about the verification process itself.

3.6 STAGE VI - Analysis of a room

The last stage takes place in a room. A setup close to the
one illustrated in Fig. 9 is used to capture room impulse
responses. But the source characteristics should be om-
nidirectional in this case, e.g. using a dodecahedron. The
post-processing is identical to stage V, chapter 3.5. The
spatio-temporal structure of the sound field in the room
can now be analyzed by using response visualization,
Fig. 14 (a). Further directional impulse responses can be
extracted for different directions, Fig. 14 (b). By applying
simple geometrics, the results can be roughly verified
for their temporal integrity and general plausibility.
Listening to either the raw impulse responses or impulse
responses convolved with dry stimuli quickly reveals
possible problems and errors in the processing chain.

Involved SOFiA modules: readVSAdata, F/D/T,
S/F/T, P/D/C, makeMTX, visual3D and makeIR.

Figure 14: Exemplary results from a measurement session
in a classroom for a decomposition of order of N = 4 sampled
on a 590 points Lebedev grid in a rigid sphere configuration
having a diameter of d = 17.5 cm. The source is a high
power wideband dodecahedron. (a) Visual response of a side
wall reflection at the timeshift of τ ≈ 33 ms for a frequency
of around 2 kHz. A rectangular window of 128 samples is
applied leading to a frequency resolution of around 170 Hz
and a temporal resolution of approx. 3 ms which corresponds
to a sonic wave traveling like one meter in space. The CAD
model of the room was captured using the laser unit of the
VariSphear system [5]. (b) Directional impulse responses
for different look directions. A high crosstalk rejection for
different directions can be observed.

4 Conclusions and outlook

A sound field analysis toolbox for MATLAB has been
presented. The toolbox includes the fundamental
toolchain from the import of spherical microphone
array data or the simulation of synthetic waves to the
reconstruction of directional impulse responses or time
domain signals and array response visualizations. The
modular and largely abstract design allows for a flexible
setup and to include external code. The SOFiA modules
can be easily modified, rearranged and aligned to create
a specific processing chain according to the respective
problem. A general approach for a toolchain verification
process has been proposed. The underlying theory has
been discussed and examples were illustrated. Certainly
the verification process could be expanded and arbitrary
additional steps and experiments can be included.
However the steps presented here are condensed to
the essential problems and are characterized by a
comprehensive proceeding covering a broad scale. It
has been shown that the SOFiA toolbox delivers a
reliable toolset for the fundamental sound field analysis
processing. The presented verification process is also
feasible to attain a survey on the methods of sound field
analysis in a practical approach. Even if the current



version of SOFiA already covers a helpful set of tools
there is unlimited potential for further development.
Particularly problems concerning spatial aliasing or
sound field extrapolation need further investigation from
the current point of view. The development of further
SOFiA modules is planned, e.g. covering visualization
and auralization of sound fields. Contributions by the
acoustic community are welcome.
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scope of the ASAR research project (Analysis and Syn-
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