
miro :: measured impulse response object

data type description



Document Information

Author Benjamin Bernschütz

Johannes M. Arend

Christoph Pörschmann

Source http://www.audiogroup.web.th-koeln.de

miro Version 1.06

Document Revision 1.3

Date 20/September/2017

Institution TH Köln - University of Applied Sciences, Institute of Communications

Engineering, Betzdorfer Str. 2, 50679 Cologne, Germany

Mail christoph.poerschmann@th-koeln.de

Phone +49 221 8275 2495

Introduction

miro is a simple object oriented data type for the storage and handling of measured
audio impulse responses, especially designed e.g. for complex microphone array or ro-
tated dummy head datasets. miro works under MATLAB c© and has been developed
for the storage and distribution of the WDR Spatial Audio Impulse Response Collec-
tion and the Neumann KU100 spherical HRIR datasets that were captured by the audio
group of Cologne University of Applied Sciences during the summer of 2012. But the
miro datatype will also be used for future work and can naturally be used and mod-
ified/optimized by the audio community. Each measurement position or session (e.g.
microphone array or rotated dummy head measurement) is stored in a separate miro
instance. The miro class combines three basic elements:

1. PROPERTIES: Description and detail information on the content and the mea-
surement session that are stored in the properties.

2. METHODS: Basic methods for the extraction and treatment of the measured
data.

3. DATA: Measured Data (Raw Impulse Responses).

2



miro datatype overview

DATAPROPERTIES

SIGNAL PROCESSING

Headphone Filter
Microphone Filter

Window Head
Truncation

Window Tail
Resampling

METHODS

internal

Signal Output
Impulse Responses,

Drop wav, Play audio,
SSR interleaved wav,

SOFiA time domain data

Information Input/Output
Access to approx. 50 properties,

signal requests,
quadrature plot,

coord. system plot, etc.

Information
Audio/IR Data

external / access

2012 bBrn

Important general information:

• Besides to the object file itself, MATLAB c© needs to have access to the miro class
definition that is stored in the file miro.m. This file must be put in the object’s
directory or to an accessible MATLAB c© searchpath.

• Miro has a basic signal-processing core (inside the obj.getIR method). All impulse
responses run through this core before they are returned, written to a file or played
back. Thus the processing settings are globally valid and affect all impulse responses

3



automatically. The processing blocks (headphone filters, windowing/truncation,
resampling) can be bypassed or adapted via the properties.

• Every impulse response has a specific ID (irID). A stereo impulse response (e.g.
from a dummy head) has two channels but one single irID only. The number-
ing/indexing of the logical contiguous impulse response sets starts at irID = 1.

• Every miro instance contains a corresponding center impulse response that is cap-
tured using an omnidirectional microphone (obj.centerMicrophone) at the physical
center (origin) of e.g. the microphone array or dummy head. The center impulse
response can is adressed via irID = 0. Be careful to distinguish this particular ID.

• For the ease of use, all main methods and properties are intentionally set public1.

• Miro is a Value Class by default (recommended), but can be changed to a Handle
Class if needed. For more information on that topic refer to theMathworks website.

• The default angles are in RAD but the object can be set to operate in DEG.

1Thus the risk of misuse and damaging an object is high. But this is not an important problem in the
present case as the original objects can always be reloaded if the current instance is broken for some
reason. If the properties and methods were set private to offer an increased protection, the objects
would become much more complex to use and would require e.g. specific getter and setter methods
for every property. This is not very convenient in the present case. Easy handling was rated to be
more valuable than a high protection level here.

4



Properties

Properties Description Type

name name/description of the IR set string

context indentifier of a larger measurement session string

location recording location string

date recording date string

engineer recording engineer string

contact email/telephone for requests string

comments comment(s) string

miroVersion version of the miro class definintion 1x1 single

type {HRIR, BRIR, MICARRAY,SINGULAR} string

fs audio sampling rate in Hz 1x1 single

taps number of taps 1x1 single

nIr number of impulse responses in dataset 1x1 single

excitatationSignal excitation signal string

gapTime gap time in s 1x1 single

microphone manufacturer/type microphone or dummy head string

source manufacturer/type source loudspeaker string

audioInterface manufacturer/type audio interface string

micPreamp manufacturer/type mic preamp string

capturingSystem manufacturer/type of the capturing system string

systemLoopLatency electrical system I/O loop latency 1x1 single

latencyCompensated {true,false} system loop latency compensation 1x1 bool

headCut number of empty leading head samples that were cut 1x1 single

sourcePosition may contain coordinates or verbal description string

e.g. 0AZ, 90EL or Left, Center

sourceDistance distance between microphone and source in m 1x1 single

5



avgAirTemp average air temperature in ◦C 1x1 single

avgRelHumidity average relative air humidity in % 1x1 single

positionReference {Virtual Source, Head Rotation, Microphone} string

postProcessing description of the post processing string

nomalization normalization factor (1=no normalization) 1x1 single

ctIRnomalization normalization factor (1=no normalization) 1x1 single

quadGrid name/description of the quadrature grid string

scatterer {true, false} (for a dummy head set true) 1x1 bool

radius microphone radius/radii in m 1x[1,2] single

azimuth position azimuth [1xnIR]

elevation position elevation [1xnIR]

quadWeight quadrature weighting [1xnIR]

chOne content description e.g. Left Ear string

chTwo content description e.g. Right Ear or [] string

irChOne impulse responses [tapsxnIR]

irChTwo impulse responses or [] [tapsxnIR]

centerMicrophone manufacturer/type of the omni center microphone string

irCenter omni center impulse response at the coordinate origin [tapsx1]

returnTaps number of taps to be returned (≤ taps) 1x1 single

resampleToFS target sampling frequency, [] = no resampling 1x1 single

headWin head window length 1x1 single

tailWin tail window length 1x1 single

headPhone manufacturer/type of the headphone string

hpcfKernel headphone compensation filter kernel string

headPhoneComp true, false enables/disables HP compensation 1x1 bool

6



mic manufacturer/type of the microphone string

mcfKernel microphone compensation filter kernel string

micComp true, false enables/disables MIC compensation 1x1 bool

shutUp true, false if set true no console messages are printed 1x1 bool

angles RAD, DEG RAD is default string

Methods

[ir, azimuth, elevation, quadWeight] = getIR(obj, irID)

Returns the impulse response, angles and the quadrature weight for a specific ID number
irID. The returned impulse response can have one or two channels depending on the
respective object. This method involves the signal processing core.

[irID, azimuth, elevation] = closestIr(obj, az_approx, el_approx)

Returns the ID number irID of the closest angle to az_approx, el_approx that is avail-
able within the object. azimuth and elevation return the corresponding closest fitting
angles. The angles can be defined either in RAD or DEG, depending on the obj.angles
status.

quadrature = getQuadrature(obj)

Returns the quadrature including azimuth and elevation angles and weights.

[] = plotQuadrature(obj)

Shows a sphere plot of the quadrature.

7



[] = miroCoordinates(obj)

lllustrates the coordinate system that is used by miro.

obj = setDEG(obj)

Changes the object’s angle reference to DEG. All angle handling is then in DEG. (The
default angle reference is RAD.)

obj = setRAD(obj)

Changes the object’s angle reference to RAD. All angle handling is then in RAD. (The
default angle reference is RAD.)

obj = setReturnTaps(obj, returnTaps, [tailWin])

Allows for changing the number of returned impulse response taps. By default, all avail-
able taps are returned (obj.returnTaps = taps). Setting the returnedTaps property to a
different value will cause that all returned impulse responses are cut off at the value de-
fined by obj.returnTaps and are by default windowed using a half-sided Hann window of
the size (obj.returnedTaps/8). The size of the window can be defined by tailWin. Using
tailWin = 0 turns off windowing.

obj = setResampling(obj, targetFS)

Sets the resampleToFS property and can be used to extract the IRs at a different audio
sampling rate. targetFS defines the target sampling rate, e.g. 44100Hz or 96000Hz. If
called without the targteFS argument, the obj.resampleToFS property is set to [] (de-
fault) and disabled. The resampling process is done within the getIR method after
truncation and windowing. The returned IRs then do NOT have the amount of samples
set in returnTaps property as these refer to the original FS. The resampling is based on
the native MATLAB c© resample() method which is included in the Signal Processing
Library. ADVICE: If not urgently necessary try to avoid resampling.

8



dropWaveFile(obj, irID, [nBits], [filename])

Drops a wave audio file containing the impulse response for a specific ID number irID.
The arguments nBits and filename are optional. Defaults: nBits = 16, filename =
obj.name,’_IR’,num2str(irID),’-AZ’,az, ’EL’,num2str(el), obj.angles, [obj.headphone]. No
dithering/noiseshaping is applied. Depending on the MATLAB c© version, the function
wavwrite or audiowrite is used to write the wave audio file.

[] = playAudio(obj, irID, audioSignal)

Plays an audio signal convolved with the preprocessed impulse response(s) given by irID.
The method serves for a quick pre-listening of the datasets. If the signal audioSignal has
more than one channel, the first channel is taken.

obj = setHeadPhones(obj, hpFilter, [linearPhase])

Sets headphone compensation filters for HRIR and BRIR datasets. Once the kernel is
loaded the filters are applied to all outgoing impulse responses as long as obj.headphoneComp
is set true. The linearPhase flag {true, false} can be set true to enable linear phase com-
pensation (Careful: High Latency). By default the flag status is false and a minimum
phase filter is applied.

obj = setMic(obj, mcFilter, [linearPhase])

Sets microphone compensation filters for HRIR and BRIR datasets. Once the kernel is
loaded the filters are applied to all outgoing impulse responses as long as obj.micComp
is set true. The linearPhase flag {true, false} can be set true to enable linear phase com-
pensation (Careful: High Latency). By default the flag status is false and a minimum
phase filter is applied.

9



[] = miroToSSR(obj, [mirror], [nBits], [filename], [normalize])

Writes a 720-channel interleaved wave file for the Sound Scape Renderer (SSR). The SSR
can e.g. be used for dynamic binaural synthesis.

SSR Website: http://spatialaudio.net/ssr/

The object must be a circular HRIR or BRIR set to be exported to an SSR wave file.
Defaults: mirror {true, false} = false (This option can be useful for symmetrical venues
to mirror a source from left to right or vice versa.), nBits = 16, filename = ’SSR_’,
obj.name, [obj.headphone], normalize {true, false} = true. No dithering/noiseshaping
is applied. To write the multichannel wave file, the internal miro_wavwrite function is
used, which allows to write a wave file with an arbitrary (high) number of channels.

[timeData1,timeData2] = miroToSOFiA(obj)

Returns a struct that is readable by the F/D/T function of the SOFiA sound field anal-
ysis toolbox. The following S/T/C spatial transform core transforms the object’s data
into the spherical harmonics domain.

SOFiA Website: http://audiogroup.web.th-koeln.de/SOFiA_wiki/WELCOME.html

Examples/Tutorial

Application examples are available at http://audiogroup.web.th-koeln.de.

10


